Local False Data Injection Attacks Against Power Grid

Xuan LiuZuyi LiPh.D. StudentAssociate Professor

Galvin Center for Electricity Innovation Illinois Institute of Technology

Outline

- Background
- False Data Attacks
- Load Redistribution(LR) Attacks
- Local LR Attacks
- Feasibility Theorem
- Conclusion

Cyber Security Issue

State Estimation

z = HX + e

$\hat{\mathbf{x}}(\mathbf{z}) = (\mathbf{H}^{\mathrm{T}}\mathbf{e}^{-1}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{e}^{-1}\mathbf{z}$

- Z: Measurements
- e: Measurement errors
- H: Jacobian matrix

Bad Data Detection

• The residual r

$$\mathbf{r} = Z - H \hat{X}$$

there is at least one faulty measurement.

False Data Injection Attacks

Load Redistribution Attack

- Assumptions
 - Generator output measurements cannot be altered;
 - Bus injection measurements of zero-injection buses in the power grid cannot be altered;
 - Load measurements can be altered within certain ranges.

Problem Formulation for Load Redistribution Attack

Load redistribution attacking model is formulated as:

 $\sum_{d=1}^{ND} \Delta D_d = 0 \tag{1}$

 $-\tau D_d \leq \Delta D_d \leq \tau D_d$ (2) S: shift factor matrix

 $\Delta \mathbf{F} = -\mathbf{S} \cdot \mathbf{V} \cdot \Delta \mathbf{D}$ (3) V: Bus-load incidence matrix

Y. Yuan, Z. Li, and K. Ren, "Modeling load redistribution attacks in power systems," *IEEE Transaction on Smart Grid*, vol. 2, no. 2, pp. 382–390, Jun. 2011.

Issues for General False Data Injection Attack a = Hc

To construct a, an attacker must know the topology and parameter information of the entire network;

It is impossible for an attacker to do so;

Does it mean that power systems are immune to false data injection attacks?

Local Load Redistribution Attack

Fig. 1 Illustrative diagram for attacking region and non-attacking region

Theorem 1 indicates that ΔP_A^{inj} can be constructed by an attacker who has only the information of the attacking region $(B_{A'})$ and who does not have any information of the rest of the power grid. **Theorem 1:**If an additional injected power into region *A*makes the phase angles of all its boundary buses increase or decrease the same

Then:

- (1) All buses in region *N* have the same incremental phase angle
- (2) The power flows in region *N* remain the same.
- (3) The incremental bus power injection vector and the incremental phase angle vector in region A satisfy

$$\Delta \mathbf{P}_{\mathbf{A}}^{\mathbf{inj}} = \boldsymbol{B}_{\mathbf{A}'} \Delta \boldsymbol{\theta}_{\mathbf{A}}$$

 $B_{A'}$ is the bus susceptancematrix in region Aexcluding tie lines;

Example	e
---------	---

• According to KCL, for the attacking region:

Line	Admittance	
1-2	0.1	
1-3	0.2	
2-3	0.1	
2-4	0.1	
3-5	0.2	
4-5	0.1	
Luin ann han		

at ILLINOIS INSTITUTE OF TECHNOLOG

 $\Delta D_1 = -15\Delta\theta_1 + 10\Delta\theta_2 + 5\Delta\theta_3$ $\Delta D_2 = 10\Delta\theta_1 - 20\Delta\theta_2 + 10\Delta\theta_3$ $\Delta D_3 = 5\Delta\theta_1 + 10\Delta\theta_2 - 15\Delta\theta_3$

Example

$$\begin{split} \Delta D_1 &= -15\Delta\theta_1 + 10\Delta\theta_2 + 5\Delta\theta_3\\ \Delta D_2 &= 10\Delta\theta_1 - 20\Delta\theta_2 + 10\Delta\theta_3\\ \Delta D_3 &= 5\Delta\theta_1 + 10\Delta\theta_2 - 15\Delta\theta_3 \end{split}$$

Choose bus 1 as the reference bus, and set :

$$\Delta \theta_2 = \Delta \theta_3 = \alpha \quad (3)$$

Substituting (3) into the KCL equations, we have the vector of false data injection of powers as follows:

 $\Delta D_1 = 15\alpha$ $\Delta D_2 = -10\alpha$ $\Delta D_3 = -5\alpha$

Example

Since bus 4 and bus 5 is in the non-attacking region,

 $\Delta D_4 = 10\Delta\theta_2 - 20\Delta\theta_4 + 10\Delta\theta_5 = 0$

 $\Delta D_5 = 5\Delta \theta_3 + 10\Delta \theta_4 - 15\Delta \theta_5 = 0$

Substituting $\Delta \theta_2 = \Delta \theta_3 = \alpha$,

$$10\alpha - 20\Delta\theta_4 + 10\Delta\theta_5 = 0 \quad (4)$$

$$5\alpha + 10\Delta\theta_4 - 15\Delta\theta_5 = 0 \quad (5)$$

Solving (4) and (5), we have

 $\Delta\theta_4 = \Delta\theta_5 = \alpha$

Feasibility Theorem for Local Load Redistribution Attack

How to guarantee the feasibility of the attacking vector?

• Theorem 2: Suppose the attacking region consists of ρ non-boundary buses. If there are at most $\rho - 1$ non-attackable buses, then a feasible attacking vector can be constructed.

Examples

There are $\rho = 1$ nonboundary buses, so $zm \leq \rho - 1 = 0$ Assuming bus 4 is nonattackable, we can obtain

$$\Delta \theta_1 = \Delta \theta_2 = \Delta \theta_3 = \Delta \theta_4 = 0$$

Examples

Conclusion

• An attacker can launch a successful false data attacks with local network information;

 Developing effective detecting methods becomes very important;

• Defending power grids against local false data attacks.

Thanks!

